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Some precautions needed in the choice of  weight functions when calculating wave 
functions by  the method of  moments are analysed. It appears that  an important  
criterion for "good"  weight functions is that the difference between the " to ta l"  and 
the " t runcated"  overlaps (both defined in the paper) be high. 

The method of  moments  is applied to wave functions involving Hylleraas-type 
correlation factors using weight functions made up of products of single-particle 
orbitals. The aim of  the calculations is part ly to test the criteria for "good"  weight 
functions, part ly a preparation of  more extended calculations of  a similar type. 
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1. Introduct ion 

In quantum mechanical calculations difficulties of  integration often more fundamentally 
influence the choice of  the analytical form of  the variational wave functions than the 
physical considerations. The difficulties of  integration, however, depend on the criteria 
by which the values of  the variational parameters are determined. It appears that the use 
of  the method of  moments  1 as a criterion is a powerful tool  for reducing difficulties of 
integration, thus opening the way of  handling problems by physically better  wave 
functions. The results obtained by the method of  moments  can, however, become un- 
stable if  some precautions are neglected. The aim of  this paper is to analyse some of these 
precautions and test them on examples which, at the same time, prepare the application of  
the method of  moments  to variational wave functions made up of  group orbitals and involw 
ing Hylleraas-type correlation factors between particles belonging to the same group [7 -10]  

~r The new name of the institute is: Computer Application Research and Development Center of the 
Chemical Industries. 

1 The idea of using the method of moments for reducing difficulties of integration seems to have 
emerged in [ 1 ]. A detailed summary of its basic principles has been given in [2]. Numerical results 
together with results of principle can be found in many papers, e.g. [3-6]. 
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2. The Stability of Results Obtained by the Method of Moments 

Let ~ be the Hamiltonian operator of  a molecular system with eigenvalues E i and eigen- 
functions U/(x) 

( ~ - -  E i ) U i ( x  ) = O; ( U i ( x ) [ U i ( x ) )  = 1; E i •E i+I ;  (i = O, 1 . . . .  ), (1) 

where x denotes the point in the configurational space. Be u i ( x  , a) the variational wave 
function by which we want to approximate to Ui(x ) and which involves the variational 
parameters a 

u i ( x , a ) = a o ~ t i ( x ,  a l ,  . . ., am ); (ui(x, a) [ ui(x, a)) = l, (2) 

i.e. we formally consider the normalization factor as a variational parameter. In order to 
determine the values of  the variational parameters a and the approximation e i to E i by 
the method of  moments we first choose a weight function generator 

Wi(X, b) = b0wi(x , b 1,. " " ,  bn) ;  (wi(x, b) [ Wi(X , b)) = 1; n/> m (3) 

depending on the point b of  some parameter space other than a. For simplicity we assume 
that both u i ( x ,  a) and w i ( x ,  b) satisfy the usual continuity and symmetry conditions, 
although if a symmetry operator commutes with ~ it is sufficient to assume that either 
u i  or w i is an eigenfunction of  it. 

Let us introduce the notation 

u i j ( x  , a) = 3 u i ( x ,  a)/Oa]; ( j  = 0 . . . . .  m ) ,  (4)  

and define the weight functions by 

w i k ( x  , b) = O w i ( x  , b)/0bx; (k = 0 . . . . .  n). (5) 

It will be assumed that the functions u q  form a linearly independent set, similarly the 
functions w i k .  

The method of  moments determines the values of the a and the approximate eigenvalue 
e i from the requirement minimize 

(Re(w/k(x, b ) [ ~ - e i ,  ui(x, a ) ) ) 2 / ~  (Re(W/k(X, b) I  ui(x, a))) 2 (6) 
k=0 / k : 0  

as a function of  a and e i keeping b fixed. In the important special case m = n this means 
the solving of  the set of  equations 

Re(wik (X ,  b) i ~ -  e i I ui(x, a)) = 0; (k = 0 . . . . .  n = m). (7) 

Although (6) may have practical advantages even in the case m = n (e.g. if the parameters 
a l  . . . . .  am are linear it leads to a symmetrical eigenvalue problem) we shall consider only 
(7) as the analysis of  (6) is more involved and probably leads to similar results. 

Eqs. (7) become equivalent with the method of  energy variation if Wik(X  , b) - u i k ( x ,  ae), 
where a e denotes the point of  the parameter space a yielded by the method of  energy 
variation, i.e. (u i ( x ,  a) [ ~ -  e i I ui(x ,  a)) = stationary. The practical advantage of  the 
method of  moments results from the fact that we can apply also other weight functions 
and use the freedom in their choice to reduce difficulties of  integration. Evidently, how- 
ever, the method of  moments will only casually yield good'results if this freedom is 
misused in such a way that the roots of (6) or (7) become unstable under small changes 
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of the weight functions. We thus have to answer two questions: a) Under which circum- 
stances do Eqs. (7) become "ill-conditioned", i.e. cause "unfor tunate"  small changes of  
the weight functions large changes in their roots; b) under which circumstances will the 
roots of  Eqs. (7) be good approximations to presumably "good"  values. As our aim is 
not to improve but to simplify the most frequently used variational method,  the method 
of energy variation, we tacitly shall assume that the "good" values of  the parameters a 
and the energy e i are ae and % yielded by  the method of energy variation. 

The analysis can be simplified by the fact that as Eqs. (7) are linear in the weight functions 
we can replace the weight functions by any linearly independent linear combinations. 

m 

vii(x  , b, c](a)) = ~ Ciik(a)wik(X , b); O' = 0 , . . . ,  rn), (8) 
k=0 

say, such which all but the 0th are orthogonal to ui(x ,  a) 

(vii(x, b, ci(a)) I ui(x ,  a)) = 0; ( / =  1 , . . . ,  m), (9) 

and in order to make the definition of the coefficients cijk(a ) unique we assume that the 
new weight functions vii(x,  b,  ci(a)) have a maximum overlap with the corresponding 
derivatives of  the wave function 

(Vi  i --  t t i j  I Vi i --  t t i j )  = minimum; (j = 0 . . . . .  m). (10) 

The value e i in the last rn equations of  (7) can then be replaced by any other value, Ei ,  say 

R e ( v i ] ( x , b ,  c j(a)) i  ~ g f - g i l u i ( x , a ) ) = O ;  ( j = l  . . . . .  rn). (11) 

(This means that we can formally decouple the determination of the parameters and the 
energy.) 

Let us denote the roots of  (1 I) by a m . Writing instead of a m the "good" values a e into 
(11) the right-hand sides will be equal to some (generally non-zero) values zj  

Re (vi i (x  , b, ci(ae) ) ] 5 ~ -  E i l u i ( x ,  ae)) = zi; ( j  = 1 . . . .  , m) .  (12) 

Qualitatively the smaller the absolute values of the zi's and the less sensitive the roots of  
(11) to small changes in the fight-hand side the better approximation a m to a e. 

In order to obtain practically more useful, although still rather qualitative, statements let 
us subtract the equations Re (uii(x, ae) I o~f- E i t ui(x ,  ae)} = 0; (j = 1 . . . . .  m) (obtained 
in a straightforward way from the basic equations of  the method of energy variation) 
from Eqs. (11). By the Schwarz inequality we obtain the following upper bounds: 

I z I 12 ~ (vi i(x , b, cj(ae) ) - uij (x  , ae) [ Vij (X , b, c](ae) ) - -  tAii(X , ae)) 

x (ui(x, ae)[ (o04 f -  El)  2 [ ui(x ,  ae)). (13) 

From the second term of the right-hand side of  (13) it can be seen that the better 
approximation ui(x ,  ae) to the exact wave function the smaller the I z I rs. Thus the better 
can the variational wave function approximate to the exact one the more stable the 
method of  moments.  This conclusion is very satisfactory, although entirely qualitative. 

From the first term of the right-hand side of  (13) it follows that in order to obtain small 
[zj i's the weight functions vii(x  , b, cj(a)) must have a possibly high overlap with the 
corresponding derivatives of  the wave function 
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1 - [(Re(vii(x, b, ci(a))luii(x , a)))2/((vii(x, b, ci(a)) I vii(x, b, ci(a))> 

x <uij(x , a) I l'lij(X, a)))] 1iN < 1. (14) 

The Nth  root appearing in (14) (where N denotes the number of  p~irticles of  the system) 
attempts to make the criterion (14), as far as possible, independent of  the number of  
particles. 

In any case, the more complicated functions enter (12) the more,  in general, the right- 
hand side of  (13) overestimates the left-hand side. This is another very satisfactory 
qualitative statement. 

Investigating the left-hand side of (12) it can be seen that the criterion (14) itself does not 
guarantee the stability of  the roots. In order to verify this let us for a minute assume that 
(contradicting our basic assumptions) the set of  wik's is linearly dependent. This can still 
be consistent with Eqs. (9), but in any case it means that the set of  vifs is either linearly 
dependent or consists of  less than m functions. Consequently the roots of  (12) become 
ill-determined. It can thus be expected that  if the set of  wi~:'s is close to being linearly 
dependent the roots of  Eqs. (12) will be ill-conditioned. For us the most important  con- 
sequence of  this is that their roots will be very sensitive to "unfor tunate"  small changes 
of  the weight functions. 

By vii(x, b, ci(a)) ~ uij(x, a), following from (14), the approximate linear dependence of 
the weight functions can be a consequence of  an approximate linear dependence of  the 
uii(x, a)'s. This also causes serious trouble in the method of energy variation, making the 
results sensitive to round-off errors. The situation in the case of  the method of  moments  
is worse as the results become sensitive to small changes of  the weight functions. However, 
as the vi/'s are generally only rough approximations to the corresponding uii's their 
approximate linear dependence can also be a consequence of an "unfor tunate"  choice of  
the weight functions. I f  the set of  uii's is near to being linearly dependent the best we can 
do is a probable contraction of the "almost  redundant" variational parameters in u i. If  
the approximate linear dependence of the weight functions is due to their "unfor tunate"  
choice one can at tempt to choose better weight functions. In any case, we shall a t tempt  to 
give a practically useful semi-quantitative criterion which, at least, can signal the danger. 

Let us define auxiliary weight functions vff ) by 
/77 

v}f)(x, b, c}t)(a)) = ~. c}f~(a)wi~(x , a); (j = 1 . . . .  , rn) (15) 
k = o  
kr 

which also satisfy Eqs. (9)-(10). The weight functions v}p and quantities associated with 
them will be referred to  as "truncated".  If  we find that the overlap between v}7 ) and ui] 
differs only insignificantly from the overlap between vii and u/i, i.e. the criterion 

1 - the left-hand side of  (14) ~ 1 - [(Re(v}7)(x, b, c}0(a)) I uii(x, a)))2/ 

((rip(x, b, c(t)(a)) i v(f)(x, b, c}t)(a)))(ui](x, a) [ uii(x, a)))l I/N (16) 

is violated, then this is a warning that the function wii is (at least in the subspace spanned 
by the uifs) near to a linear combination of  the other weight functions and the problem 
is probably ill-conditioned. 

Obviously, more elaborate and probably more complicated criteria could be derived but 
it can hardly be believed that a weight function wii which can give no significant contribu- 
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fion to the overlap with its "own"  derivative ui] will be a "good" weight function. Con- 
sequently it is not sure that the use of  more elaborate criteria pays off. 

The calculation of the coefficients cilk(a) means the solving of  the set of  linear equations 

m 
ci/k<wil [ wik> = <wiz Iui/); (l = O , . . . ,  m ; l  = 1 , . . . ,  m)  (17) 

k = 0  

and a set of  similar equations with k, l :Pj  in the truncated case. In practice, the linear 
dependence can also be signaled by the fact that Eqs. (17) are ill-conditioned. 

The error in the approximate eigenvalue e i can be estimated by similar tools. From the 
0th equation of  (7) it follows that 

elm = Re[(wio(X , b)[ ~f  [ ui(x, am))/(Wio(X , b)[ ui(x, am)) ] (18) 

By the orthogonality relations (9) we can replace Wio in (18) by rio. Making use of  the 
identity e im= E i - ( E  i - e l m  ) the error in elm can be written as 

elm - E i = Re [<vio(X , b, co(am)) j ~ f -  E i [ ui(x , am))/(vio(x, b, co(am)) l ui(x, am)> ]. 

(19) 

If  we apply the Schwarz inequality to the numerator at the right-hand side of  (19) the 

upper bound 

i e i m -  Ei[ <~ i Re<vio(X , b, co(am) ) [ ui(x , am))1-1 X 

x [<rio(X, b, co(am) ) I rio(X, b, co(am))><ui(x , am) i ( f - E i )  2 I ui(x, am))] 1/2 (20) 

of  the error is obtained. For the ground state by the identity ~ - E o = ( Z g -  Eo) 1/2 
( j/C-- Eo) 1/2 (20) can also be written as 

l eom - Eo 1 ~< [ Re<voo(X, b, co(am)) h Uo(X, am)> [ - ix  

[<voo(X , b, co(am) ) i ~ -  Eo [ Voo(X, b, Co(am))><Uo(X, am) i ~(r ~- E o I Uo(X, am)>] 1/2 
(21) 

An elementary analysis of  (20)-(21) yields the result that, similar to the case of  the 
method of energy variation, the error in eim contains only terms proportional  to the 
square of  the error in u i provided that the criterion 

[(Re <rio(X, b, C0(am)) ] Ui(X, am )))2/((vio(X ' b, co(a m ))1 vio(X , b, co(a m )))x 

x <ui(x , am) I ui(x, am)))] 1/N ~ 1 (22) 

is not severely violated. Attention is again called to the fact that the more complicated 
functions make up the integrands the more,  in general, the Schwarz inequality over- 
estimates the integrals. 

Essentially equivalent results for the error in the energy have been derived in [2] and [3] 
by different tools. 

The criteria (14), (16) and (22) must obviously be satisfied in the neighbourhood of 
a = a m . As we do not know a m at the beginning of  the calculations we often have to 
proceed as follows. We choose some starting values of  the parameters b and calculate 
a m . Then, if the requirements t~i](X , b, c/(am)) ~ bli](x,  am) (or, in practice, the require- 
ments wij(x,  b) ~ uii(x, am) ) are not fulfilled we choose new values of the b's and iterate. 
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This procedure is very similar to the self-consistent field procedure and can be carried out 
parallel with it. If  both the parameters a and b are linear such an iterative procedure is, in 
general, unnecessary. 

It is often possible to carry out the procedure outlined in the preceding paragraph in the 
following way. We construct the weight function generator (3) by making some systematic 
small changes in the variational wave function (2) in order to simplify the integrals and 
then formally replace the parameters a i by parameters b i. Thus we can consider both 
ui(x, a) and wi(x, b) as approximate wave functions and can try to determine the para- 
meters in both of them by the method of moments using each other also as weight 
function generators. This means that we determine both u i and w i from the requirement 

Re [(Wi(X, b) t o~ [ Ui(X, a))/(Wi(X , b) I ui(x, a))] = stationary. (23) 

The advantages of such a procedure are obvious but it must be handled with great care as 
it can yield worse weight functions than an explicit adjusting of the vij's to the ui/'s. 
Probably in most cases the best method is to start with (23) and if some tests signal 
deterioration of the weight functions we switch on explicit adjusting. 

3. Applications 

The calculations presented below form part of the investigations to apply the method of 
moments for the determination of correlated wave functions. Most of the methods 
applied for actual calculations are using the single-particle function expansions which 
severely restrict the rate of convergence (natural orbital expansion [7], pseudo-natural 
orbital expansion [8], extended separated pair theory [9]). The rate of convergence can 
partly be improved by an explicit inclusion of the interparticle co-ordinates into the trial 
functions [10]. This approach, however, is associated with severe difficulties of integration 
if the number of particles is not extremely low. 

The variant of the method of moments used by Boys and Handy applies a particular form 
of weight functions which, to a certain extent, facilitates the evaluation of the integrals 
[3]. The method proposed in the present paper uses weight functions which can be decom- 
posed into products of single-particle functions, and wave functions constructed from 
group orbitals, taking into account by interparticle co-ordinates the correlation of particles 
belonging to the same group. It can easily be verifed that in this way the difficulties of 
integration can significantly be reduced as in the worst integrals the co-ordinates of 
particles belonging to two groups are inseparably coupled, while the method of energy 
variation leads to integrals inseparably involving the co-ordinates of all particles. The 
method is particularly suitable for wave functions of the cluster expansion type. 

In order to test the applicability of the method of moments in the case of such weight 
and wave functions simple test calculations have been made for the helium atom and 
the negative hydrogen ion. In both cases three different approximations have been made, 
the wave functions Uo(X, a) being 

Appr. A: a o ( e x p ( - a l r l - a l r 2 )  

+ a2 exp(_axrx -a l r2 ) r l2 )  (24) 

Appr. B: a o ( e x p ( - a l r l - a l r 2 )  

+ a2 e x p ( - a l r l - a l r 2 ) r 1 2  
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Appr. C: 

+ a3 exp( -a l r l -a l r2 ) r l r2  

+ a 4 exp(-alr1-alr2)(r21 + r~)) 

ao(exp( -a l r l -a l r2 )  

+ a 2 exp( -a lrx-a lr2)r l2  

+ a 3 exp ( -a l r l -a l r2 ) r l r2  

+ a 4 exp ( -a l r l -a l r2 ) ( r  ~ + r~) 

+as exp ( -a l r l -a l r2 ) ( r l  + r2) 

+ a 6 e x p ( - - a l r l - - a l r 2 ) r ] 2 )  

(25) 

(26) 

Here q ,  r2 and rt2 denote the distances of electron 1 and 2 from the fixed nucleus 
and each other, respectively. 

The weight function generators have been obtained in all three cases by a) replacing 
exp ( - a  1 r l - a  lr2)r 12 by 

Appr. 0: exp(-coalq-coalr2)r~  (27) 

Appr. 2: exp(-c2atrl-c2alr2)r22 (28) 

in the second terms of (24)-(26) and b) formally writing instead of ai's, bi's. The constants 
Co and c2 have been chosen in several different ways and are to be discussed later. By 
r]2 = r ] + r~ - 2(x 1x2 + y lY2 + Z 1Z2) the weight functions can be decomposed into 
products of single-particle functions. 

The six approximations belonging to the wave functions (24)-(26) and the weight 
function generators obtained by the replacements (27)-(28) will be denoted in an obvious 
way by A0, A2, B0, B2, and CO, C2. 

We first investigate the behaviour of the total and truncated overlaps belonging to the 
substitutions (27)-(28) as functions of the constants Co, respectively c2. The values listed 
in Table 1 belong to al = 1 but the trivial behaviour of the integrals under the change of 
a common scale factor ensures that the results are also similar for al 4 = 1. It  is also dear 
that the investigations can be limited to Vo2, the other v0j's will hardly cause any surprise. 
In order to blow up the differences and thus make the results more easy to compare the 
exponents 1IN in the criteria (14)-(16) have been disregarded. 

The data listed in Table 1 suggest the following: a) The approximations "2" are probably 
better than the approximations "0". b) It is not surprising if the stability and consequently 
the accuracy of results in the approximation "0" decrease if the number of variational 
parameters increase; the approximation CO is probably exceptionally "malevolent" as the 
round-off errors completely overshadow the difference between the total and the truncated 
overlaps and, in addition, the best value of Co is very close to 1.0 which may cause trouble 
in the numerical stability of the eigenvalue problem. 

This "malevolent" behaviour of the approximations "0" could hardly be predicted if we 
studied only the overlaps between the weight functions and the corresponding derivatives 
of the wave function. The maximum overlap between the function exp ( -r l -r2)r12 and 
the functions exp (-Coq-cor2)r~ and exp (-c2r1-c2r2)r212 is, namely, 0.9204 and 
0.9628 respectively. This can indicate a moderate superiority of the approximations "2" 
but by no means an extreme one. 
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Table 1. Truncated and total overlap values belonging to the weight functions v(~ in the 
approximations A0-C2 

Appr.: A0 B0 CO A2 B2 C2 

Trunc.a Trunc.a Trunc.a Trunc.a Trunc.a Trunc.a 
0.2025 0.0722 0.0095 0.2025 0.0722 0.0095 

co Tota lb Total b Total b c2 Total b Total b Total b 
1.10 0.0706 0.0634 0.0095 0.90 0.0385 0.0374 0.0061 
1 .05  0.0698 0.0634 0.0095 0.95 0.0274 0.0272 0.0055 
0.95 0.0699 0.0634 - 0.0095 1 .15  0.0119 0.0117 0.0043 
0.90 0.0708 0.0634 0.0095 1.10 0.0080 0.0072 0.0038 
0.85 0.0726 0.0636 0.0095 1 .15  0.0071 0.0045 0.0033 
0.80 0.0752 0.0661 0.0095 1 .20  0.0094 0.0031 0.0029 
0.75 0.0789 0.0722 0.0095 1 .25  0.0150 0.0026 0.0026 
0.70 0.0837 0.0698 0.0095 1 .30  0.0241 0.0028 0.0024 
0.65 0.0897 0.0684 0.0095 1 .35  0.0366 0.0035 0.0023 
0.60 0.0971 0.0680 0.0095 1 .40  0.0522 0.0046 0.0022 
0.55 0.1059 0.0681 0.0095 1 .45  0.0702 0.0059 0.0022 
0.50 0.1162 0.0683 0.0095 1 .50  0.0900 0.0075 0.0023 

a The right-hand side of Eq. (16) without the exponent 1IN. 
b The left-hand side of Eq. (14) without the exponent 1IN. 

The results of the calculations on the ground state of the helium atom and the negative 
hydrogen ion are listed in Table 2. All results are given in atomic units. Where no entries 
are given the results were either meaningless or could not  be calculated because of 
numerical instability or insufficient convergence of the iterations. For the negative 

hydrogen ion no reliable expectation value of the operator 1/r12 could be found in the 
literature. 

The columns of Table 2 correspond to the following calculations: 

1. The best values of Co, respectively c2, taken from Table 1. Because of numerical 
stability problems the value c o = 0.97 may be slightly inaccurate. 

2. The best values of Co, respectively c2, calculated from the maximum overlap 
between exp (-rl-r2)r12 and exp (-corl-cor2)r~ respectively exp (-c2rl-c2r2)r]2. 

3. Arbitrarily chosen values of Co and c 2. 
4. The values obtained by the method of energy variation. 
5. The "exact" values [11]. 

Table 2 contains the expectation values of the Hamiltonian operator and the operators 
6(3)(r12), r 2 + r 2, and 1/r12. 

4. Discussion 

The results presented in Table 2 need little comment.  They fulfil (perhaps to an un- 
expected extent) the predictions following from the criteria (14), (16) and (22). We have 
the impression that the results may be a bit "too beautiful" and do not  want to over- 
estimate the power of the criteria. In any case, the results together with the results of 
many other papers indicate that the method of moments,  if used with precaution, can 
yield reliable results comparable with those obtained by the method of energy variation. 

It may, perhaps, be useful to call attention to the following fact. The maximum overlap 
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Table  2. Resu l t s  o f  the  ca lcu la t ions  on  the  h e l i u m  a t o m  and  the  nega t ive  h y d r o g e n  ion.  The  e x p l a n a t i o n  
is g iven  in t he  t e x t  

He l ium A t o m  

Appr .  A0 M e t h o d  of  M o m e n t s  En. Vat .  E x a c t  

co = 0,97 0.75 0 .50  - - 

< af  ) = - 2 . 8 2 6 3 3  - 2 . 8 2 5 2 4  - 2 . 9 1 9 7 0  - 2 . 8 9 1 1 2  - 2 . 9 0 3 7 2  

{6 (3)( / '12))  = 0 ,22542  0 .21119  0 .08006  0 .11991  0 .10635  
(r21 + r~) = 2 .05774  2 .08061  2 . 1 9 2 7 8  2 .15366  2 .3870  

<1/r12) = 1 ,09758  1 .07933  0 .92613  0 .97429  0 . 9 4 5 8 2  

Appr .  B0 

co = 0.97 0.75 0 .50  - - 
( ~e ) = - 2 . 8 9 8 7 7  - - 2 . 8 9 0 9 6  - 2 . 9 0 2 6 8  - 2 . 9 0 3 7 2  

~(3)(r~2)> = 0 .12264  - 0 . 13742  0 .11539  0 .10635  
~r~ + r~) = 2 .37371  - 2 . 42442  2 .35390  2 .3870  

{1/r~2> = 0 .95369  - 0 .96424  0 . 9 4 8 0 2  0 . 9 4 5 8 2  

Appr .  C0 

co = 0.97 0.75 0 .50  - - 

( a f )  . . . . .  2 .90333  - 2 . 9 0 3 7 2  
(6(3)(r12)) . . . .  0 . 11196  0 .10635  

(r~ + r~) . . . .  2 .38647  2 .3870  

(1/r12) . . . .  0 . 94608  0 . 9 4 5 8 2  

Appr .  A2 

c2 = 1.13 1.25 1.083 - - 

( a ~ )  = - 2 . 8 9 0 0 4  - 2 . 8 8 9 8 2  - 2 . 8 9 0 2 0  - 2 . 8 9 1 1 2  - 2 . 9 0 3 7 2  
<~ (3)(rlz)> = 0 . 1 2 1 6 0  0 .12195  0 .12135  0 .11991  0 .10635  

{r~ + r22) = 2 .16050  2 .15875  2 .16119  2 .15366  2 .3870  

(1/r12> = 0 .97509  0 .97571 0 .97475  0 .97429  0 . 9 4 5 8 2  

Appr .  B2 

c 2 = 1.27 1.25 1,083 - - 

< a f )  = - 2 . 9 0 1 1 8  - 2 . 9 0 1 1 7  - 2 . 9 0 1 2 4  - 2 . 9 0 2 6 8  - 2 . 9 0 3 7 2  
~6 (3)(r 12)) = 0 .11826  0 . 1 1 8 2 8  0 .11826  0 .11539  0 .10635  

( r ]  + r~) = 2 .36403  2 .36440  2 .36715  2 .35390  2 .3870  

(1/r12 > = 0 .94991  0 .94988  0 .94943  0 . 9 4 8 0 2  0 . 9 4 5 8 2  

Appr .  C2 

e2 = 1.42 1.25 1.083 - - 

Cat > = - 2 . 9 0 1 4 8  - 2 . 9 0 0 7 7  - 2 . 9 0 0 6 4  - 2 . 9 0 3 3 3  - 2 . 9 0 3 7 2  
~6(3)(r 12)) = 0 .11789  0 .12048  0 .12105  0 .11196  0 .10635  

(r~ + r~) = 2 .37093  2 .36218  2 .37033  2 .38647  2 .3870  

(1/r12> = 0 . 9 4 9 3 0  0 .95065  0 .95031  0 .94608  0 . 9 4 5 8 2  

Negat ive  H y d r o g e n  Ion  

Appr .  A0 M e t h o d  o f  m o m e n t s  En.  Var. E x a c t  

co = 0 .97  0.75 0 .50  - _ 

( ~ e )  = - 0 . 4 7 4 2 8  - 0 . 4 7 4 4 0  - 0 . 4 7 5 1 0  - 0 . 5 0 8 7 8  - 0 . 5 2 7 7 5  

(6 (3)(r12)) = 0 .01249  0 .01245  0 .01226  0 .00389  0 .00274  

(r~ + r~) = 1 2 . 7 4 0 5 4  12 .74470  12 .76577  1 2 . 6 5 4 8 0  23 .827  
~l/r~2> = 0 .42648  0 .42621  0 .42480  0 .37311  - 
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Table 2-continued 

T. Szondy and E. Kapuy 

Appr. B0 Method of moments En. Var. Exact 

c o = 0.97 0.75 0.50 - - 
(a~ > = -0.51365 - -0.45746 -0.52566 -0.52775 

<~(a)(rl2)~ = 0.00584 - 0.02655 0.00320 0.00274 
(r~ + r~) = 17.49715 - 15.44325 18.26688 23.827 

(1/r12~ = 0.34767 - 0.39464 0.32447 - 

Appr. CO 
co = 0.97 0.75 0.50 - - 

ae > . . . . .  0.52646 -0.52775 
(~ O)(r12)> . . . .  0.00336 0.00274 

(r~ + r ~  = - - - 19.20641 23.827 
(l/r12) . . . .  0.32362 

Appr. A2 
c 2 = 1.13 1.25 1.083 - - 

( ~  = -0.50974 -0.50903 -0.51006 -0.50878 -0.52775 
(6 (3)(r 12)) = 0.00371 0.00384 0.00365 0.00389 0.00274 

~r21 + r22> = 12.72990 12.64700 12.76120 12.65480 23.827 
(1/r12) = 0.37097 0.37286 0.37018 0.37311 -- 

Appr. B2 
c2 = 1.27 1.25 1.083 - - 

< a~ > = -0.52529 -0.52530 -0.52553 -0.52566 -0.52775 
(6(a)(r 12)) = 0.00327 0.00327 0.00322 0.00320 0.00274 

~r 2 + r22) = 18.39629 18.41183 18.46714 18.26688 23.827 
(1/r12) = 0.32433 0.32421 0.32339 0.32447 - 

Appr. C2 
c2 = 1.42 1.25 1.083 - - 

~ > = -0.52662 -0.52647 -0.52634 -0.52646 -0.52775 
(6(a)(r12)) = 0.00330 0.00335 0.00340 0.00336 0.00274 

<r 2 + r2> = 19.17686 19.14109 19.15572 19.20641 23.827 
<1/r12> = 0.32375 0.32392 0.32383 0.32362 - 

b e t w e e n  exp(-r1-r2)r12 and exp(-cor l -cor2)r~ is ob ta ined  at Co = 0.75.  Consequen t ly  

f rom simple overlap cons idera t ions  one  would  prefer  this value. However ,  in the  approxima-  

t ion B0 the  d i f fe rence  b e t w e e n  the  tota l  and the  t runca ted  overlap,  jus t  at c o = 0.75; is 

a lmost  zero,  a l though the  to ta l  overlap i t se l f  is n o t  small. Now,  in our  calculat ions we were 

unable  to  make  the  i tera t ions  convergent  in app rox ima t ion  B0 wi th  c o = 0.75.  On the  

o the r  h a n d  at Co = 0.97 the  i te ra t ions  s m o o t h l y  converged a l though the  le f t -hand  side 

base is a lmost  degenera te .  

It is been  tes ted  on a few examples  h o w  the results in the  approx ima t ions  " 0 "  behave 

i f  more  weigh t  func t ions  are applied than  the  m i n i m u m ,  i.e. we calculate by  Eq. (6). The 

addi t ional  weigh t  funct ions  had the  form exp(-c 'orl-c~r2) (c' 0 ~ c~)). In all calculat ions 
r t  

five addi t ional  weight  func t ions  have been  applied wi th  various values o f  c~ and Co more  

or less arbitrari ly d is t r ibuted  around Co. The accuracy and stabi l i ty  of  the results  def in i te ly  

improved  bu t  did n o t  reach the preciseness  o f  the approx ima t ions  " 2 " .  

It has  also been  invest igated h o w  the results behave if  simple weight  factors as 1/r I are 

i n t r o d u c e d  in to  the  cri teria (14) - (16) .  In m o s t  cases the  expec t a t i on  values o f  those  quart- 
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tities which are sensitive to the shape of the wave function in regions preferred by the 

weight factor slightly improved, but  the differences were small and not  convincing. 

The calculations have been carried out with a 28-bit precision. 
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